
2026/02/03 15:06 1/4 Abstract Factory 패턴

OBG WiKi - http://obg.co.kr/doku/

Abstract Factory 패턴

같은 클래스를 상속받는 여러 파생 클래스 중 하나의 클래스에 대한 객체를 만드는 유틸리티 클래스.
Abstract Factory 패턴의 경우에는 Factory 클래스에서 만들 수 있는 Product가 여러 가지가 있다.

타입

Creational Pattern

문제

런타임에 성질, 파라메터가 결정되는 객체를 만들고 싶다. 컴파일 타임 이전, 즉 코드 작성 시에는 어떤
클래스의 객체가 초기화될지 알 수 없다.

해결

객체를 만드는 인터페이스를 정의하고 어떤 클래스를 인스턴스화할지 결정하는 서브클래스를 정의한다.

클래스 다이어그램

예제

abstract_factory1.cpp

class Computer

http://obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Aabstract_factory&media=programming:design_pattern:abstract_factory.png
http://obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:abstract_factory&codeblock=0

Last
update:
2020/11/29
14:09

programming:design_pattern:abstract_factory http://obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

http://obg.co.kr/doku/ Printed on 2026/02/03 15:06

{
public:
 virtual void Run() = 0;
 virtual void Stop() = 0;
};
class Laptop: public Computer
{
public:
 virtual void Run(){mHibernating = false;}
 virtual void Stop(){mHibernating = true;}
private:
 bool mHibernating; // Whether or not the machine is hibernating
};
class Desktop: public Computer
{
public:
 virtual void Run(){mOn = true;}
 virtual void Stop(){mOn = false;}
private:
 bool mOn; // Whether or not the machine has been turned on
};

class ComputerFactory
{
public:
 static Computer *NewComputer(const std::string &description)
 {
 if(description == "laptop")
 return new Laptop;
 if(description == "desktop")
 return new Desktop;
 return NULL;
 }
};

abstract_factory2.cpp

#include <stdexcept>
#include <iostream>
#include <memory>

class Pizza {
public:
 virtual int getPrice() const = 0;
};

class HamAndMushroomPizza : public Pizza {
public:

http://obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:abstract_factory&codeblock=1

2026/02/03 15:06 3/4 Abstract Factory 패턴

OBG WiKi - http://obg.co.kr/doku/

 virtual int getPrice() const { return 850; }
};

class DeluxePizza : public Pizza {
public:
 virtual int getPrice() const { return 1050; }
};

class HawaiianPizza : public Pizza {
public:
 virtual int getPrice() const { return 1150; }
};

class PizzaFactory {
public:
 enum PizzaType {
 HamMushroom,
 Deluxe,
 Hawaiian
 };

 static Pizza* createPizza(PizzaType pizzaType) {
 switch (pizzaType) {
 case HamMushroom:
 return new HamAndMushroomPizza();
 case Deluxe:
 return new DeluxePizza();
 case Hawaiian:
 return new HawaiianPizza();
 }
 throw "invalid pizza type.";
 }
};

/*
 * Create all available pizzas and print their prices
 */
void pizza_information(PizzaFactory::PizzaType pizzatype)
{
 Pizza* pizza = PizzaFactory::createPizza(pizzatype);
 std::cout << "Price of " << pizzatype << " is " <<
pizza->getPrice() << std::endl;
 delete pizza;
}

int main ()
{
 pizza_information(PizzaFactory::HamMushroom);
 pizza_information(PizzaFactory::Deluxe);
 pizza_information(PizzaFactory::Hawaiian);

Last
update:
2020/11/29
14:09

programming:design_pattern:abstract_factory http://obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

http://obg.co.kr/doku/ Printed on 2026/02/03 15:06

}

참고

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Abstract_Factory

From:
http://obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

Last update: 2020/11/29 14:09

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Abstract_Factory
http://obg.co.kr/doku/
http://obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

	Abstract Factory 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

