
2026/02/03 15:06 1/9 Interpreter 패턴

OBG WiKi - http://obg.co.kr/doku/

Interpreter 패턴

타입

Behavioral Pattern

문제

해결

클래스 다이어그램

예제

interpreter1.cpp

#include <iostream>
#include <string.h>

using namespace std;

class Thousand;
class Hundred;
class Ten;
class One;

class RNInterpreter

http://obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Ainterpreter&media=programming:design_pattern:interpreter.png
http://obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:interpreter&codeblock=0

Last update:
2020/11/29 14:09 programming:design_pattern:interpreter http://obg.co.kr/doku/doku.php?id=programming:design_pattern:interpreter

http://obg.co.kr/doku/ Printed on 2026/02/03 15:06

{
public:
 RNInterpreter(); // ctor for client
 RNInterpreter(int){}
 // ctor for subclasses, avoids infinite loop
 int interpret(char*); // interpret() for client
 virtual void interpret(char *input, int &total)
 {
 // for internal use
 int index;
 index = 0;
 if (!strncmp(input, nine(), 2))
 {
 total += 9 * multiplier();
 index += 2;
 }
 else if (!strncmp(input, four(), 2))
 {
 total += 4 * multiplier();
 index += 2;
 }
 else
 {
 if (input[0] == five())
 {
 total += 5 * multiplier();
 index = 1;
 }
 else
 index = 0;
 for (int end = index + 3; index < end; index++)
 if (input[index] == one())
 total += 1 * multiplier();
 else
 break;
 }
 strcpy(input, &(input[index]));
 } // remove leading chars processed
protected:
 // cannot be pure virtual because client asks for instance
 virtual char one(){ return '\0'; }
 virtual char *four(){ return ""; }
 virtual char five(){ return '\0'; }
 virtual char *nine(){ return ""; }
 virtual int multiplier(){ return 0; }
private:
 RNInterpreter *thousands;
 RNInterpreter *hundreds;
 RNInterpreter *tens;
 RNInterpreter *ones;

2026/02/03 15:06 3/9 Interpreter 패턴

OBG WiKi - http://obg.co.kr/doku/

};

class Thousand: public RNInterpreter
{
public:
 // provide 1-arg ctor to avoid infinite loop in base class ctor
 Thousand(int): RNInterpreter(1){}
protected:
 char one()
 {
 return 'M';
 }
 char *four()
 {
 return "";
 }
 char five()
 {
 return '\0';
 }
 char *nine()
 {
 return "";
 }
 int multiplier()
 {
 return 1000;
 }
};

class Hundred: public RNInterpreter
{
public:
 Hundred(int): RNInterpreter(1){}
protected:
 char one()
 {
 return 'C';
 }
 char *four()
 {
 return "CD";
 }
 char five()
 {
 return 'D';
 }
 char *nine()
 {
 return "CM";
 }

Last update:
2020/11/29 14:09 programming:design_pattern:interpreter http://obg.co.kr/doku/doku.php?id=programming:design_pattern:interpreter

http://obg.co.kr/doku/ Printed on 2026/02/03 15:06

 int multiplier()
 {
 return 100;
 }
};

class Ten: public RNInterpreter
{
public:
 Ten(int): RNInterpreter(1){}
protected:
 char one()
 {
 return 'X';
 }
 char *four()
 {
 return "XL";
 }
 char five()
 {
 return 'L';
 }
 char *nine()
 {
 return "XC";
 }
 int multiplier()
 {
 return 10;
 }
};

class One: public RNInterpreter
{
public:
 One(int): RNInterpreter(1){}
protected:
 char one()
 {
 return 'I';
 }
 char *four()
 {
 return "IV";
 }
 char five()
 {
 return 'V';
 }

2026/02/03 15:06 5/9 Interpreter 패턴

OBG WiKi - http://obg.co.kr/doku/

 char *nine()
 {
 return "IX";
 }
 int multiplier()
 {
 return 1;
 }
};

RNInterpreter::RNInterpreter()
{
 // use 1-arg ctor to avoid infinite loop
 thousands = new Thousand(1);
 hundreds = new Hundred(1);
 tens = new Ten(1);
 ones = new One(1);
}

int RNInterpreter::interpret(char *input)
{
 int total;
 total = 0;
 thousands->interpret(input, total);
 hundreds->interpret(input, total);
 tens->interpret(input, total);
 ones->interpret(input, total);
 if (strcmp(input, ""))
 // if input was invalid, return 0
 return 0;
 return total;
}

int main()
{
 RNInterpreter interpreter;
 char input[20];
 cout << "Enter Roman Numeral: ";
 while (cin >> input)
 {
 cout << " interpretation is " << interpreter.interpret(input)
<< endl;
 cout << "Enter Roman Numeral: ";
 }
}

interpreter2.cpp

#include <iostream>
#include <string>

http://obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:interpreter&codeblock=1

Last update:
2020/11/29 14:09 programming:design_pattern:interpreter http://obg.co.kr/doku/doku.php?id=programming:design_pattern:interpreter

http://obg.co.kr/doku/ Printed on 2026/02/03 15:06

#include <map>
#include <list>

namespace wikibooks_design_patterns
{

 // based on the Java sample around here

 typedef std::string String;
 struct Expression;
 typedef std::map<String,Expression*> Map;
 typedef std::list<Expression*> Stack;

 struct Expression {
 virtual int interpret(Map variables) = 0;
 virtual ~Expression() {}
 };

 class Number : public Expression {
 private:
 int number;
 public:
 Number(int number) { this->number = number; }
 int interpret(Map variables) { return number; }
 };

 class Plus : public Expression {
 Expression* leftOperand;
 Expression* rightOperand;
 public:

 Plus(Expression* left, Expression* right) {
 leftOperand = left;
 rightOperand = right;
 }
 ~Plus(){
 delete leftOperand;
 delete rightOperand;
 }

 int interpret(Map variables) {
 return leftOperand->interpret(variables) +
rightOperand->interpret(variables);
 }
 };

 class Minus : public Expression {
 Expression* leftOperand;
 Expression* rightOperand;
 public:

2026/02/03 15:06 7/9 Interpreter 패턴

OBG WiKi - http://obg.co.kr/doku/

 Minus(Expression* left, Expression* right) {
 leftOperand = left;
 rightOperand = right;
 }
 ~Minus(){
 delete leftOperand;
 delete rightOperand;
 }

 int interpret(Map variables) {
 return leftOperand->interpret(variables) -
rightOperand->interpret(variables);
 }
 };

 class Variable : public Expression {
 String name;
 public:
 Variable(String name) { this->name = name; }
 int interpret(Map variables) {
 if(variables.end() == variables.find(name)) return 0;
 return variables[name]->interpret(variables);
 }
 };

 // While the interpreter pattern does not address parsing, a
parser is provided for completeness.

 class Evaluator : public Expression {
 Expression* syntaxTree;

 public:
 Evaluator(String expression){
 Stack expressionStack;

 size_t last = 0;
 for (size_t next = 0; String::npos != last; last =
(String::npos == next) ? next : (1+next)) {
 next = expression.find(' ', last);
 String token(expression.substr(last, (String::npos ==
next) ? (expression.length()-last) : (next-last)));

 if (token == "+") {
 Expression* right = expressionStack.back();
expressionStack.pop_back();
 Expression* left = expressionStack.back();
expressionStack.pop_back();
 Expression* subExpression = new Plus(right, left);
 expressionStack.push_back(subExpression);
 }
 else if (token == "-") {

Last update:
2020/11/29 14:09 programming:design_pattern:interpreter http://obg.co.kr/doku/doku.php?id=programming:design_pattern:interpreter

http://obg.co.kr/doku/ Printed on 2026/02/03 15:06

 // it's necessary remove first the right operand
from the stack
 Expression* right = expressionStack.back();
expressionStack.pop_back();
 // ..and after the left one
 Expression* left = expressionStack.back();
expressionStack.pop_back();
 Expression* subExpression = new Minus(left, right);
 expressionStack.push_back(subExpression);
 }
 else
 expressionStack.push_back(new Variable(token));
 }

 syntaxTree = expressionStack.back();
expressionStack.pop_back();
 }

 ~Evaluator() {
 delete syntaxTree;
 }

 int interpret(Map context) {
 return syntaxTree->interpret(context);
 }
 };

}

void main()
{
 using namespace wikibooks_design_patterns;

 Evaluator sentence("w x z - +");

 static
 const int sequences[][3] = {
 {5, 10, 42}, {1, 3, 2}, {7, 9, -5},
 };
 for (size_t i = 0; sizeof(sequences)/sizeof(sequences[0]) > i; ++i)
{
 Map variables;
 variables["w"] = new Number(sequences[i][0]);
 variables["x"] = new Number(sequences[i][1]);
 variables["z"] = new Number(sequences[i][2]);
 int result = sentence.interpret(variables);
 for (Map::iterator it = variables.begin(); variables.end() !=
it; ++it) delete it->second;

 std::cout<<"Interpreter result: "<<result<<std::endl;

2026/02/03 15:06 9/9 Interpreter 패턴

OBG WiKi - http://obg.co.kr/doku/

 }
}

참고

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Interpreter

From:
http://obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://obg.co.kr/doku/doku.php?id=programming:design_pattern:interpreter

Last update: 2020/11/29 14:09

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Interpreter
http://obg.co.kr/doku/
http://obg.co.kr/doku/doku.php?id=programming:design_pattern:interpreter

	Interpreter 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

