
2026/02/03 15:04 1/8 Prototype 패턴

OBG WiKi - http://obg.co.kr/doku/

Prototype 패턴

타입

Creational Pattern

문제

새로운 객체를 만들려고할 때 드는 시간과 비용이 크다.

해결

clone() 가상 함수를 가지는 추상 클래스를 정의하고 파생 클래스에 clone() 함수를 통해 자기 자신을 복
사하게 한다.

클래스 다이어그램

예제

prototype1.cpp

/**
 * Implementation of Prototype Method
 **/
#include <iostream>
#include <map>

http://obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Aprototype&media=programming:design_pattern:prototype.png
http://obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:prototype&codeblock=0

Last update: 2020/11/29
14:09 programming:design_pattern:prototype http://obg.co.kr/doku/doku.php?id=programming:design_pattern:prototype

http://obg.co.kr/doku/ Printed on 2026/02/03 15:04

#include <string>

using namespace std;

enum RECORD_TYPE_en
{
 CAR,
 BIKE,
 PERSON
};

/**
 * Record is the base Prototype
 */

class Record
{
 public :

 Record() {}

 virtual ~Record() {}

 virtual Record* clone()=0;

 virtual void print()=0;
};

/**
 * CarRecord is a Concrete Prototype
 */

class CarRecord : public Record
{
 private:
 string m_carName;
 int m_ID;

 public:
 CarRecord(string carName, int ID)
 : Record()
 , m_carName(carName)
 ,m_ID(ID)
 {
 }

 CarRecord(const CarRecord& carRecord)
 : Record(carRecord)//call the base default copy constructor
 {
 m_carName = carRecord.m_carName;

2026/02/03 15:04 3/8 Prototype 패턴

OBG WiKi - http://obg.co.kr/doku/

 m_ID = carRecord.m_ID;
 }

 ~CarRecord() {}

 Record* clone()
 {
 return new CarRecord(*this);
 }

 void print()
 {
 cout << "Car Record" << endl
 << "Name : " << m_carName << endl
 << "Number: " << m_ID << endl << endl;
 }
};

/**
 * BikeRecord is the Concrete Prototype
 */

class BikeRecord : public Record
{
 private :
 string m_bikeName;

 int m_ID;

 public :
 BikeRecord(string bikeName, int ID)
 : Record()
 , m_bikeName(bikeName)
 , m_ID(ID)
 {
 }

 BikeRecord(const BikeRecord& bikeRecord)
 : Record(bikeRecord)
 {
 m_bikeName = bikeRecord.m_bikeName;
 m_ID = bikeRecord.m_ID;
 }

 ~BikeRecord() {}

 Record* clone()
 {
 return new BikeRecord(*this);
 }

Last update: 2020/11/29
14:09 programming:design_pattern:prototype http://obg.co.kr/doku/doku.php?id=programming:design_pattern:prototype

http://obg.co.kr/doku/ Printed on 2026/02/03 15:04

 void print()
 {
 cout << "Bike Record" << endl
 << "Name : " << m_bikeName << endl
 << "Number: " << m_ID << endl << endl;
 }
};

/**
 * PersonRecord is the Concrete Prototype
 */

class PersonRecord : public Record
{
 private :
 string m_personName;

 int m_age;

 public :
 PersonRecord(string personName, int age)
 : Record()
 , m_personName(personName)
 , m_age(age)
 {
 }

 PersonRecord(const PersonRecord& personRecord)
 : Record(personRecord)
 {
 m_personName = personRecord.m_personName;
 m_age = personRecord.m_age;
 }

 ~PersonRecord() {}

 Record* clone()
 {
 return new PersonRecord(*this);
 }

 void print()
 {
 cout << "Person Record" << endl
 << "Name : " << m_personName << endl
 << "Age : " << m_age << endl << endl ;
 }
};

2026/02/03 15:04 5/8 Prototype 패턴

OBG WiKi - http://obg.co.kr/doku/

/**
 * RecordFactory is the client
 */

class RecordFactory
{
 private :
 map<RECORD_TYPE_en, Record* > m_recordReference;

 public :
 RecordFactory()
 {
 m_recordReference[CAR] = new CarRecord("Ferrari", 5050);
 m_recordReference[BIKE] = new BikeRecord("Yamaha", 2525);
 m_recordReference[PERSON] = new PersonRecord("Tom", 25);
 }

 ~RecordFactory()
 {
 delete m_recordReference[CAR];
 delete m_recordReference[BIKE];
 delete m_recordReference[PERSON];
 }

 Record* createRecord(RECORD_TYPE_en enType)
 {
 return m_recordReference[enType]->clone();
 }
};

int main()
{
 RecordFactory* poRecordFactory = new RecordFactory();

 Record* poRecord;
 poRecord = poRecordFactory->createRecord(CAR);
 poRecord->print();
 delete poRecord;

 poRecord = poRecordFactory->createRecord(BIKE);
 poRecord->print();
 delete poRecord;

 poRecord = poRecordFactory->createRecord(PERSON);
 poRecord->print();
 delete poRecord;

 delete poRecordFactory;
 return 0;

Last update: 2020/11/29
14:09 programming:design_pattern:prototype http://obg.co.kr/doku/doku.php?id=programming:design_pattern:prototype

http://obg.co.kr/doku/ Printed on 2026/02/03 15:04

}

prototype2.cpp

class CPrototypeMonster
 {
 protected:
 CString _name;
 public:
 CPrototypeMonster();
 CPrototypeMonster(const CPrototypeMonster& copy);
 virtual ~CPrototypeMonster();

 virtual CPrototypeMonster* Clone() const=0; // This forces
every derived class to provide an overload for this function.
 void Name(CString name);
 CString Name() const;
 };

 class CGreenMonster : public CPrototypeMonster
 {
 protected:
 int _numberOfArms;
 double _slimeAvailable;
 public:
 CGreenMonster();
 CGreenMonster(const CGreenMonster& copy);
 ~CGreenMonster();

 virtual CPrototypeMonster* Clone() const;
 void NumberOfArms(int numberOfArms);
 void SlimeAvailable(double slimeAvailable);

 int NumberOfArms() const;
 double SlimeAvailable() const;
 };

 class CPurpleMonster : public CPrototypeMonster
 {
 protected:
 int _intensityOfBadBreath;
 double _lengthOfWhiplikeAntenna;
 public:
 CPurpleMonster();
 CPurpleMonster(const CPurpleMonster& copy);
 ~CPurpleMonster();

 virtual CPrototypeMonster* Clone() const;

http://obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:prototype&codeblock=1

2026/02/03 15:04 7/8 Prototype 패턴

OBG WiKi - http://obg.co.kr/doku/

 void IntensityOfBadBreath(int intensityOfBadBreath);
 void LengthOfWhiplikeAntenna(double lengthOfWhiplikeAntenna);

 int IntensityOfBadBreath() const;
 double LengthOfWhiplikeAntenna() const;
 };

 class CBellyMonster : public CPrototypeMonster
 {
 protected:
 double _roomAvailableInBelly;
 public:
 CBellyMonster();
 CBellyMonster(const CBellyMonster& copy);
 ~CBellyMonster();

 virtual CPrototypeMonster* Clone() const;

 void RoomAvailableInBelly(double roomAvailableInBelly);
 double RoomAvailableInBelly() const;
 };

 CPrototypeMonster* CGreenMonster::Clone() const
{
 return new CGreenMonster(*this);
 }

 CPrototypeMonster* CPurpleMonster::Clone() const
 {
 return new CPurpleMonster(*this);
 }

 CPrototypeMonster* CBellyMonster::Clone() const
{
 return new CBellyMonster(*this);
 }

// Client

 void DoSomeStuffWithAMonster(const CPrototypeMonster* originalMonster
)
 {
 CPrototypeMonster* newMonster = originalMonster->Clone();
 ASSERT(newMonster);

 newMonster->Name("MyOwnMonster");
 // Add code doing all sorts of cool stuff with the monster.
 delete newMonster;
 }

Last update: 2020/11/29
14:09 programming:design_pattern:prototype http://obg.co.kr/doku/doku.php?id=programming:design_pattern:prototype

http://obg.co.kr/doku/ Printed on 2026/02/03 15:04

참고

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Prototype

From:
http://obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://obg.co.kr/doku/doku.php?id=programming:design_pattern:prototype

Last update: 2020/11/29 14:09

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Prototype
http://obg.co.kr/doku/
http://obg.co.kr/doku/doku.php?id=programming:design_pattern:prototype

	Prototype 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

