2025/10/16 00:50 1/5 Javascript - 00O

Javascript - [[

¢ ChildClassName.prototype = new ParentClass(); OO0 OOOO O O0O.

e ChildClassName.prototype.constructor=ChildClassName 0 OO 00O OO0 OO0 OO0O0O0O
oo oo ooo.

e 0000 0 U0OD0 DO OO ODOODOO Function.call)DD DOO0ODO OO0 OD0O0O OOO O
oo o og.

e JavaScriptd protected D00 OOODO OOO.

Example

Mammal (name

.hame=name
.offspring
Mammal. .haveABaby
newBaby Mammal("Baby " .hame
.offspring.push(newBaby
newBaby
Mamma'l. .toString
'[Mammal "' .name+"'"]"
Cat. Mammal // Here's where the inheritance occurs
Cat. .constructor=Cat // Otherwise instances of Cat would
have a constructor of Mammal
Cat(name
.hame=name
Cat. .toString
I[Cat ni .name |||]|
someAnimal Mammal('Mr. Biggles'
myPet Cat('Felix"
alert('someAnimal is '+someAnimal // results in 'someAnimal is [Mammal
"Mr. Biggles"]'
alert('myPet is '+myPet // results in 'myPet is [Cat "Felix"]'
myPet.haveABaby // calls a method inherited from
Mamma l
alert(myPet.offspring.length // shows that the cat has one baby now
alert(myPet.offspring|0 // results in '[Mammal "Baby Felix"]'

OBG WiKi - http://obg.co.kr/doku/

Last update: 2020/11/29 14:09 programming:javascript:inheritance http://obg.co.kr/doku/doku.php?id=programming:javascript:inheritance

Using the .constructor property

Look at the last line in the above example. The baby of a Cat should be a Cat, right? While the
haveABaby() method worked, that method specifically asks to create a new Mammal. While we could
make a new haveABaby() method for the Cat subclass like this.offspring.push(new Cat(“Baby
"+this.name)), it would be better to have the ancestor class make an object of the correct type.

Every object instance in JS has a property named constructor that points to its parent class. For
example, someAnimal.constructor==Mammmal is true. Armed with this knowledge, we can
remake the haveABaby() method like this:

Mammal. .haveABaby
newBaby .constructor("Baby " .name
.0ffspring.push(newBaby
newBaby
myPet.haveABaby // Same as before: calls the method
inherited from Mammal
alert(myPet.offspring // Now results in '[Cat "Baby Felix"]'

Calling 'super' methods

Let's extend the example now so that when baby kittens are created, they 'mew’ right after being
born. To do this, we want to write our own custom Cat.prototype.haveABaby() method, which is able
to call the original Mammal.prototype.haveABaby() method:

Cat. .haveABaby
Mammal. .haveABaby.call
alert("mew!"

The above may look a little bit bizarre. Javascript does not have any sort of 'super' property, which
would point to its parent class. Instead, you use the call() method of a Function object, which allows
you to run a function using a different object as context for it. If you needed to pass parameters to
this function, they would go after the 'this'. For more information on the Function.call() method, see
the MSDN docs for call().

Making your own 'super' property

Rather than having to know that Cat inherits from Mammal, and having to type in Mammal.prototype
each time you wanted to call an ancestor method, wouldn't it be nice to have your own property of
the cat pointing to its ancestor class? Those familiar with other OOP languages may be tempted to
call this property 'super’, but JS reserves this word for future use. The word 'parent’, while used in
some DOM items, is free for the JS language itself, so let's call it parent in this example:

http://obg.co.kr/doku/ Printed on 2025/10/16 00:50

2025/10/16 00:50 3/5 Javascript - 00O

Cat. Mammal
Cat. .constructor=Cat
Cat. .parent Mammal.
Cat. .haveABaby
theKitten .parent.haveABaby.call
alert("mew!"
theKitten

Spoofing pure virtual classes

Some OOP languages have the concept of a pure virtual class...one which cannot be instantiated
itself, but only inherited from. For example, you might have a LivingThing class which Mammal
inherited from, but you didn't want someone to be able to make a LivingThing without specifying what
type of thing it was. You can do this in JS by making the virtual class an object instead of a function.

The following example shows how this could be used to simulate a pure virtual ancestor:

LivingThing
beBorn
.alive=true
Mamma'l. LivingThing
Mammal. .parent LivingThing //Note: not 'LivingThing.prototype'
Mammal. .haveABaby
.parent.beBorn.call
newBaby .constructor("Baby " .hame
.0ffspring.push(newBaby

newBaby

With the above, doing something like var spirit = new LivingThing() would result in an error,
since LivingThing is not a function, and hence can't be used as a constructor.

Convenient Inheritance

Rather than writing 3 lines every time you want to inherit one class from another, it's convenient to
extend the Function object to do it for you:

Function. .inheritsFrom parentClassOrObject
parentClassOrObject.constructor Function

//Normal Inheritance
parentClassOrObject

OBG WiKi - http://obg.co.kr/doku/

Last update: 2020/11/29 14:09 programming:javascript:inheritance http://obg.co.kr/doku/doku.php?id=programming:javascript:inheritance

.constructor
.parent parentClassOrObject.

//Pure Virtual Inheritance
parentClassOrObject
.constructor
.parent parentClassOrObject

//
//
LivingThing
beBorn
.alive = true
//
//
Mammal (name
.name=name
.offspring
Mammal.inheritsFrom(LivingThing
Mammal. .haveABaby
.parent.beBorn.call
newBaby .constructor("Baby " .name
.offspring.push(newBaby
newBaby
//
//
Cat(name
.name=name

Cat.inheritsFrom(Mammal

Cat. .haveABaby
theKitten .parent.haveABaby.call
alert("mew!"
theKitten
Cat. .toString
‘[Cat "' .hame+"'"]"
//
//
felix Cat("Felix"
kitten = felix.haveABaby // mew!
alert(kitten // [Cat "Baby Felix"]

http://obg.co.kr/doku/ Printed on 2025/10/16 00:50

2025/10/16 00:50 5/5 Javascript - 00O

Just make sure you call this method immediately after your constructor, before you extend the
prototype for the object.

Protected methods?

Some OOP languages have the concept of 'protected' methods—methods that exist in a parent or
ancestor class that can only be called by descendants of the object (on each other), but not by
external objects. These are not supported in JS. If you need such, you will have to write your own
framework, ensuring that each class has a 'parent' or some such property, and walking up the tree to
find ancestors and checking whether or not the calling object is the same type. Doable, but not
enjoyable.

N

e Simple JavaScript Inheritance

From:
http://obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://obg.co.kr/doku/doku.php?id=programming:javascript:inheritance

Last update: 2020/11/29 14:09

OBG WiKi - http://obg.co.kr/doku/

http://ejohn.org/blog/simple-javascript-inheritance/
http://obg.co.kr/doku/
http://obg.co.kr/doku/doku.php?id=programming:javascript:inheritance

	Javascript - 상속
	Example
	Using the .constructor property
	Calling 'super' methods
	Making your own 'super' property
	Spoofing pure virtual classes
	Convenient Inheritance
	Protected methods?
	참고

