
2026/02/03 15:15 1/8 Debugger

OBG WiKi - http://obg.co.kr/doku/

Debugger

프로그램의 에러나 구조를 파악하기 위한 프로그램.

종류

White-box debugger

소스 코드를 확인할 수 있다. 대부분의 IDE가 제공하는 디버거가 이에 속한다.

Black-box debugger

소스 코드를 확인할 수 없으며 디어셈블된 결과만 확인 가능하다. Reversing Engineering할 때 쓰는 툴

들이 대부분 이에 속한다. Black-box debugger는 프로그램 제어 권한 정도에 따라 다음 두 가지로 나뉜
다.

User mode

최소한의 제어 권한을 가진다.

Kernel mode

운영 체제의 핵심 기능, 드라이버 등의 low-level component를 다룰 수 있다.

디버그 이벤트

디버거는 디버그 이벤트가 발생할 때까지 무한정 기다리게 된다. 대표적인 디버그 이벤트는 다음과 같다.

Breakpoint hits
Memory violations
디버깅한 프로그램에 의한 exceptions

디버그 이벤트가 발생하면 이에 대응되는 이벤트 핸들러가 호출된다.

Breakpoint

Breakpoint를 사용하여 프로세스를 정지시킬 수 있다. Breakpoint는 방법에 따라 크게 세 가지로 분류할
수 있다.

Last update:
2020/11/29
14:09

programming:reverse_engineering:debugger http://obg.co.kr/doku/doku.php?id=programming:reverse_engineering:debugger

http://obg.co.kr/doku/ Printed on 2026/02/03 15:15

Software breakpoint

CPU가 실행하는 기계어 명령인 opcode(Operation Code)에 interrupt 3 (INT 3) instruction을 삽입하는
방식이다. 예를 들면 다음과 같다.

Breakpoint 설정 전 opcode

0x44332211: 8BC3 MOV EAX, EBX

Breakpoint 설정 후 opcode

0x44332211: CCC3 MOV EAX, EBX

단, 메모리에 로드된 실행 프로그램의 바이너리 내용을 변경하는 것이므로 CRC 체크섬을 사용하는 경우
이 값을 변경시킬 수 있다.

Hardware breakpoint

CPU의 debug register(DR0 ~ DR7)를 이용하는 breakpoint이다. 프로그램을 변경할 수 없으며

breakpoint가 적게 필요한 경우에 사용할 수 있다. Debug register의 각 역할은 다음과 같다.

Debug register 역할

DR0 ~ DR3 Breakpoint의 주소 저장

DR4, DR5 Reserved
DR6 디버그 이벤트의 type 결정

DR7 Breakpoint on/off, flag, length 결정

4개의 주소, 최대 4바이트에 대해서만 break point를 걸 수 있다는게 단점.

Memory breakpoint

메모리의 특정 영역(페이지)에 대한 권한을 변경하는 방법이다. 메모리 페이지의 권한에 대한 몇몇 예를
들면 다음과 같다.

권한 의미

Page execution 실행을 가능하게 한다. 프로세스가 read/write하려 하면 access violation을 발생시킨다.

Page read Page에 대한 읽기만 가능하게 한다. Write/execution하는 경우 access violation을 발생
시킨다.

Page write Page에 대한 쓰기를 가능하게 한다.

Guard page Page에 대한 어떤 접근도 못하게 한다. 접근하는 경우 예외를 발생시키고 page를 원래
상태로 돌린다.

위 권한을 조합하여 지정할 수도 있다. 위 권한 중 gaurd page가 reversing engineering에 유용하다.

2026/02/03 15:15 3/8 Debugger

OBG WiKi - http://obg.co.kr/doku/

관련 윈도우 API

프로세스

BOOL WINAPI CreateProcessA(
 LPCSTR lpApplicationName,
 LPTSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

프로세스를 실행시킨다. lpApplicationName, lpCommandLine, dwCreationFlags, lpStartupInfo, and
lpProcessInformation 정도가 중요한 파라메터이다. 그 외 파라메터는 보통 NULL로 주면 된다.
STARTUPINFO, PROCESS_INFORMATION 구조체에 대한 내용은 MSDN을 참고한다.

CreateProcess : http://msdn.microsoft.com/en-us/library/ms682425.aspx
STARTUPINFO : http://msdn.microsoft.com/en-us/library/ms686331.aspx
PROCESS_INFORMATION : http://msdn.microsoft.com/en-us/library/ms686331.aspx

HANDLE WINAPI OpenProcess(
 DWORD dwDesiredAccess,
 BOOL bInheritHandle
 DWORD dwProcessId
);

프로세스를 연 후 핸들을 리턴한다. 특정 프로세스의 디버깅을 위해 이 핸들을 사용하는 경우가 많다. 디
버깅을 위해선 dwDesiredAccess는 PROCESS_ALL_ACCESS, bInheritHandle는 FALSE로 설정하면 된다.
dwProcessId는 프로세스의 PID값을 넣어주면 된다. 이는 작업 관리자를 통해 확인할 수 있다.

OpenProcess : http://msdn.microsoft.com/en-us/library/ms684320.aspx

BOOL WINAPI DebugActiveProcess(
 DWORD dwProcessId
);

프로세스를 디버거에 attach한다. Attach가 되면 디버거가 디버그 이벤트를 제어할 수 있게 된다.

DebugActiveProcess : http://msdn.microsoft.com/en-us/library/ms679295.aspx

디버그

BOOL WINAPI WaitForDebugEvent(

http://msdn.microsoft.com/en-us/library/ms682425.aspx
http://msdn.microsoft.com/en-us/library/ms686331.aspx
http://msdn.microsoft.com/en-us/library/ms686331.aspx
http://msdn.microsoft.com/en-us/library/ms684320.aspx
http://msdn.microsoft.com/en-us/library/ms679295.aspx

Last update:
2020/11/29
14:09

programming:reverse_engineering:debugger http://obg.co.kr/doku/doku.php?id=programming:reverse_engineering:debugger

http://obg.co.kr/doku/ Printed on 2026/02/03 15:15

 LPDEBUG_EVENT lpDebugEvent,
 DWORD dwMilliseconds
);

typedef struct DEBUG_EVENT {
 DWORD dwDebugEventCode;
 DWORD dwProcessId;
 DWORD dwThreadId;
 union {
 EXCEPTION_DEBUG_INFO Exception;
 CREATE_THREAD_DEBUG_INFO CreateThread;
 CREATE_PROCESS_DEBUG_INFO CreateProcessInfo;
 EXIT_THREAD_DEBUG_INFO ExitThread;
 EXIT_PROCESS_DEBUG_INFO ExitProcess;
 LOAD_DLL_DEBUG_INFO LoadDll;
 UNLOAD_DLL_DEBUG_INFO UnloadDll;
 OUTPUT_DEBUG_STRING_INFO DebugString;
 RIP_INFO RipInfo;
 }u;
};

디버그 이벤트를 정해진 시간만큼 기다린다. dwMilliseconds를 INFINITE로 설정하면 무한정 기다리게 된

다. lpDebugEvent에 기다릴 이벤트에 대한 정보를 기록한다. 디버그 이벤트를 잡아내면 특정 이벤트 핸
들러를 통해 원하는 동작을 할 수 있게 된다.

WaitForDebugEvent : http://msdn.microsoft.com/en-us/library/ms681423.aspx
DEBUG_EVENT : http://msdn.microsoft.com/en-us/library/ms679308.aspx

BOOL WINAPI ContinueDebugEvent(
 DWORD dwProcessId,
 DWORD dwThreadId,
 DWORD dwContinueStatus
);

디버그 이벤트에 대한 이벤트 핸들러 동작을 수행 후 프로세스를 다시 시작하기 위한 함수이다. 앞의 두
파라메터는 WaitForDebugEvent 함수가 리턴된 후 DEBUG_EVENT 구조체의 변수 중 dwProcessId와

dwThreadId가 초기화 되면 얻을 수 있다. dwContinueStatus는 DBG_CONTINUE와

DBG_EXCEPTION_NOT_HANDLED가 올 수 있으며 각각 프로세스 실행을 계속할지 exception을 실행할지
를 의미한다.

ContinueDebugEvent : http://msdn.microsoft.com/en-us/library/ms679285.aspx

쓰레드

HANDLE WINAPI OpenThread(
 DWORD dwDesiredAccess,
 BOOL bInheritHandle,
 DWORD dwThreadId

http://msdn.microsoft.com/en-us/library/ms681423.aspx
http://msdn.microsoft.com/en-us/library/ms679308.aspx
http://msdn.microsoft.com/en-us/library/ms679285.aspx

2026/02/03 15:15 5/8 Debugger

OBG WiKi - http://obg.co.kr/doku/

);

OpenThread : http://msdn.microsoft.com/en-us/library/ms684335.aspx

HANDLE WINAPI CreateToolhelp32Snapshot(
 DWORD dwFlags,
 DWORD th32ProcessID
);

CreateToolhelp32Snapshot : http://msdn.microsoft.com/en-us/library/ms682489.aspx

BOOL WINAPI Thread32First(
 HANDLE hSnapshot,
 LPTHREADENTRY32 lpte
);

typedef struct THREADENTRY32{
 DWORD dwSize;
 DWORD cntUsage;
 DWORD th32ThreadID;
 DWORD th32OwnerProcessID;
 LONG tpBasePri;
 LONG tpDeltaPri;
 DWORD dwFlags;
};

Thread32First : http://msdn.microsoft.com/en-us/library/ms686728.aspx
THREADENTRY32 : http://msdn.microsoft.com/en-us/library/ms686735.aspx

BOOL WINAPI GetThreadContext(
 HANDLE hThread,
 LPCONTEXT lpContext
);

BOOL WINAPI SetThreadContext(
 HANDLE hThread,
 LPCONTEXT lpContext
);

GetThreadContext : http://msdn.microsoft.com/en-us/library/ms679362.aspx
SetThreadContext : http://msdn.microsoft.com/en-us/library/ms680632.aspx

typedef struct CONTEXT {
 DWORD ContextFlags;
 DWORD Dr0;
 DWORD Dr1;
 DWORD Dr2;
 DWORD Dr3;
 DWORD Dr6;
 DWORD Dr7;

http://msdn.microsoft.com/en-us/library/ms684335.aspx
http://msdn.microsoft.com/en-us/library/ms682489.aspx
http://msdn.microsoft.com/en-us/library/ms686728.aspx
http://msdn.microsoft.com/en-us/library/ms686735.aspx
http://msdn.microsoft.com/en-us/library/ms679362.aspx
http://msdn.microsoft.com/en-us/library/ms680632.aspx

Last update:
2020/11/29
14:09

programming:reverse_engineering:debugger http://obg.co.kr/doku/doku.php?id=programming:reverse_engineering:debugger

http://obg.co.kr/doku/ Printed on 2026/02/03 15:15

 FLOATING_SAVE_AREA FloatSave;
 DWORD SegGs;
 DWORD SegFs;
 DWORD SegEs;
 DWORD SegDs;
 DWORD Edi;
 DWORD Esi;
 DWORD Ebx;
 DWORD Edx;
 DWORD Ecx;
 DWORD Eax;
 DWORD Ebp;
 DWORD Eip;
 DWORD SegCs;
 DWORD EFlags;
 DWORD Esp;
 DWORD SegSs;
 BYTE ExtendedRegisters[MAXIMUM_SUPPORTED_EXTENSION];
};

CONTEXT : http://msdn.microsoft.com/en-us/library/windows/desktop/ms679284(v=vs.85).aspx

Breakpoint

Soft Breakpoints

BOOL WINAPI ReadProcessMemory(
 HANDLE hProcess,
 LPCVOID lpBaseAddress,
 LPVOID lpBuffer,
 SIZE_T nSize,
 SIZE_T* lpNumberOfBytesRead
);

BOOL WINAPI WriteProcessMemory(
 HANDLE hProcess,
 LPCVOID lpBaseAddress,
 LPCVOID lpBuffer,
 SIZE_T nSize,
 SIZE_T* lpNumberOfBytesWritten
);

ReadProcessMemory : http://msdn.microsoft.com/en-us/library/ms680553.aspx
WriteProcessMemory : http://msdn.microsoft.com/en-us/library/ms681674.aspx

FARPROC WINAPI GetProcAddress(
 HMODULE hModule,
 LPCSTR lpProcName

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679284
http://msdn.microsoft.com/en-us/library/ms680553.aspx
http://msdn.microsoft.com/en-us/library/ms681674.aspx

2026/02/03 15:15 7/8 Debugger

OBG WiKi - http://obg.co.kr/doku/

);

HMODULE WINAPI GetModuleHandle(
 LPCSTR lpModuleName
);

GetProcAddress : http://msdn.microsoft.com/en-us/library/ms683212.aspx
GetModuleHandle : http://msdn.microsoft.com/en-us/library/ms683199.aspx

Memory Breakpoints

void WINAPI GetSystemInfo(
 Out LPSYSTEM_INFO lpSystemInfo
);

typedef struct _SYSTEM_INFO {
 union {
 DWORD dwOemId;
 struct {
 WORD wProcessorArchitecture;
 WORD wReserved;
 };
 };
 DWORD dwPageSize;
 LPVOID lpMinimumApplicationAddress;
 LPVOID lpMaximumApplicationAddress;
 DWORD_PTR dwActiveProcessorMask;
 DWORD dwNumberOfProcessors;
 DWORD dwProcessorType;
 DWORD dwAllocationGranularity;
 WORD wProcessorLevel;
 WORD wProcessorRevision;
} SYSTEM_INFO;

GetSystemInfo : http://msdn.microsoft.com/en-us/library/ms724381.aspx
SYSTEM_INFO : http://msdn.microsoft.com/en-us/library/ms724958.aspx

SIZE_T WINAPI VirtualQuery(
 HANDLE hProcess,
 LPCVOID lpAddress,
 PMEMORY_BASIC_INFORMATION lpBuffer,
 SIZE_T dwLength
);

typedef struct MEMORY_BASIC_INFORMATION{
 PVOID BaseAddress;
 PVOID AllocationBase;
 DWORD AllocationProtect;
 SIZE_T RegionSize;

http://msdn.microsoft.com/en-us/library/ms683212.aspx
http://msdn.microsoft.com/en-us/library/ms683199.aspx
http://msdn.microsoft.com/en-us/library/ms724381.aspx
http://msdn.microsoft.com/en-us/library/ms724958.aspx

Last update:
2020/11/29
14:09

programming:reverse_engineering:debugger http://obg.co.kr/doku/doku.php?id=programming:reverse_engineering:debugger

http://obg.co.kr/doku/ Printed on 2026/02/03 15:15

 DWORD State;
 DWORD Protect;
 DWORD Type;
}

VirtualQueryEx : http://msdn.microsoft.com/en-us/library/aa366907.aspx
MEMORY_BASIC_INFORMATION : http://msdn.microsoft.com/en-us/library/aa366775.aspx

BOOL WINAPI VirtualProtectEx(
 HANDLE hProcess,
 LPVOID lpAddress,
 SIZE_T dwSize,
 DWORD flNewProtect,
 PDWORD lpflOldProtect
);

VirtualProtectEx : http://msdn.microsoft.com/en-us/library/aa366899

From:
http://obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://obg.co.kr/doku/doku.php?id=programming:reverse_engineering:debugger

Last update: 2020/11/29 14:09

http://msdn.microsoft.com/en-us/library/aa366907.aspx
http://msdn.microsoft.com/en-us/library/aa366775.aspx
http://msdn.microsoft.com/en-us/library/aa366899
http://obg.co.kr/doku/
http://obg.co.kr/doku/doku.php?id=programming:reverse_engineering:debugger

	Debugger
	종류
	White-box debugger
	Black-box debugger
	User mode
	Kernel mode

	디버그 이벤트
	Breakpoint
	Software breakpoint
	Hardware breakpoint
	Memory breakpoint

	관련 윈도우 API
	프로세스
	디버그
	쓰레드
	Breakpoint
	Soft Breakpoints
	Memory Breakpoints

